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Choice Under Uncertainty

6.B. EXPECTED UTILITY THEORY

EXERCISE 6.B.1.

Suppose that L ≻ L′. Then, for all α ∈ (0,1) and L′′ ∈L , we have

L ≻ L′

⇔ not L′ ≿ L

⇔ not αL′+ (1−α)L′′ ≿αL+ (1−α)L′′

⇔αL+ (1−α)L′′ ≻αL′+ (1−α)L′′.

Similarly, suppose that L ∼ L′. Then, for all α ∈ (0,1) and L′′ ∈L , we have

L ∼ L′

⇔ L′ ≿ L and L ≿ L′

⇔αL+ (1−α)L′′ ≿αL′+ (1−α)L′′ and αL′+ (1−α)L′′ ≿αL+ (1−α)L′′

⇔αL+ (1−α)L′′ ∼αL′+ (1−α)L′′.
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Finally, suppose that L ≻ L′ and L′′ ≻ L′′′. Then we have

αL+ (1−α)L′′ ≻αL′+ (1−α)L′′ ≻αL+ (1−α)L′′′.

By transitivity, we have αL+ (1−α)L′′ ≻αL+ (1−α)L′′′.

EXERCISE 6.B.2.

Supposed ≿ is represented by a utility function U (·) with expected utility form. Then for all
L,L′,L′′ ∈L and α ∈ (0,1) we have

L ≿ L′

⇔U (L) ≥U (L′)
⇔αU (L)+ (1−α)U (L′′) ≥αU (L′)+ (1−α)U (L′′)
⇔U (αL+ (1−α)L′′) ≥U (αL′+ (1−α)L′′)
⇔αL+ (1−α)L′′ ≿αL′+ (1−α)L′′.

It means ≿ satisfies independence axiom.

EXERCISE 6.B.3.

Since the set of outcomes C is finite, there exist best and worst outcomes in C . Let L and L
denote the degenerate lottery that yields the best and the worst outcome with probability
one respectively.

Suppose that C = {c1, . . . ,cN }. It is sufficient to show that L ≿∑n
n=1 ancn ≿ L for all an ≥ 0

with
∑n

n=1 an = 1. Since L ≿ cn for all n = 1, . . . , N , then L ≿ a1c1+(1−c1)L ≿ a1c1+a2c2+(1−
a1−a2)L, and so on. Similarly, it is easy to get

∑n
n=1 ancn ≿ L for all an ≥ 0 with

∑n
n=1 an = 1.

EXERCISE 6.B.4.

Exercise correction:

• [. . .]the sure outcome C and the lottery of A with probability q and D with probability
1−q .

• Criterion 2: [. . .] an unnecessary evaluation in 15% [. . .]

(a) U (A) = 1,U (B) = p,U (C ) = q,U (D) = 0.

(b) p A, pB , pC , pD denotes the probability of the four outcome.

Under criterion 1, p A = 0.99×0.9 = 0.891, pB = 0.99×0.1 = 0.099, pC = 0.01×0.9 =
0.009, and pD = 0.01×0.1 = 0.001. Hence, (p A, pB , pC , pD ) = (0.891,0.099,0.009,0.001)
and the expected utility is 0.099p +0.009q +0.891.

Under criterion 2, (p A, pB , pC , pD ) = (0.8415,0.1485,0.0095,0.0005). The expected
utility is 0.1485p + 0.0095q + 0.8415. Thus, the criterion 1 is preferred if and only if
99p +q < 99. It is quite easy to satisfy.
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EXERCISE 6.B.5.

(a) It is shown in Exercise 6.B.1.

(b) Like figure 6.B.5(b), it would cause a contradiction if the indifference curve is not a
straight lines. However, in figure 6.B.5, the weak axiom is not violated but the indif-
ference curve is not parallel.

(c) Original independence axiom requires indifference curve to be straight line and par-
allel, but the betweenness axiom does not require it to be parallel. Hence, the be-
tweenness axiom is weaker than the independence axiom.

(d) If the indifference curve is as following, then it satisfies the betweenness axiom and
yield the choice of the Allais paradox.

3
(0 dollar)

2
(500,000 dollars)

(2,500,000 dollars)
1

L1L′
1

L2

L′
2

EXERCISE 6.B.6.

Given L = (p1, . . . , pN ) and L′ = (p ′
1, . . . , p ′

N ), assume that a and a′ are solutions of the maxi-
mize problems maxa∈A

∑
n pnun(a) and maxa∈A

∑
n p ′

nun(a) respectively. Thus, we have

U (αL+ (1−α)L′)
=max

a∈A

∑
n

(αpn + (1−α)p ′
n)un(a)

=
∑
n

(αpn + (1−α)p ′
n)un(a∗)

=α∑
n

pnun(a∗)+ (1−α)
∑
n

p ′
nun(a∗)

≤α∑
n

pnun(a)+ (1−α)
∑
n

p ′
nun(a′)

=αU (L)+ (1−α)U (L′)
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where a∗ is the solution of the maximize problem of maxa∈A
∑

n(αpn +(1−α)p ′
n)un(a). We

prove the concavity.

EXERCISE 6.B.7.

By transitivity, L ≻ L′ if and only if xL ≻ xL′ . By monotonicity, xL ≻ xL′ if and only if xL > xL′ .

6.C. MONEY LOTTERIES AND RISK AVERSION

EXERCISE 6.C.1.

We begin with analyzing the second-order condition of the maximize problem, that is

q2(1−π)u′′(w −αq)+π(1−q)2u′′(w −D + (α(1−q))) < 0.

It means that the first-order condition is decreasing. Then we put α = D into first-order
condition with condition q >π, we would get

(π−q)u′(w −Dq) < 0

. Since we have proven that the first-order condition is decreasing, it means that the op-
timal α∗ which leads the first-order condition equals 0 would be smaller than D . In other
words, the individual would not insure completely.

EXERCISE 6.C.2.

(a) We can evaluate his utility from a distribution F (·) is∫
u(x)dF (x) =

∫
βx2 +γxdF (x) =βσ2 +βµ2 +γµ

where µ= ∫
xdF (x) is the mean and σ2 = ∫

(x −µ)2dF (x) is the variance of the distri-
bution.

(b) Supposed that U (·) is compatible with a Bernoulli utility function u(·). That is, U (F ) =∫
u(x)dF (x) for any distribution function F (·).

For any x > y , let G(·) and H(·) be distributions putting probability one at x and y
respectively. Hence u(x) = U (G) = x and u(y) = U (H) = y . It means u(·) is strictly
monotone. However, let F0(·) be a distribution yielding 0 for sure and Fε(·) be a dis-

tribution yielding 0 and ε> 0 with equal chance. Thus, U (F0) = 0 and U (Fε) = ε
2 −r ε2

4 .
It shows that U (Fε) would be negative when ε> 2

r , a contradiction.

4



EXERCISE 6.C.3.

First, we claim that (i) implies (iv). Suppose that the decision maker is risk averse. By defi-
nition,

∫
u(x)dF (x) ≤ u(

∫
xdF (x)) for all distributions F (·). Given some x and ε, let F (·) be

a distribution putting probability 0.5 on both x +ε and x −ε. Hence,

1

2
u(x +ε)+ 1

2
u(x −ε)

=
∫

u(x)dF (x)

≤u(
∫

xdF (x))

=u(x)

=(
1

2
+π(x,ε,u))u(x +ε)+ (

1

2
−π(x,ε,u))u(x −ε).

In short, we have π(x,ε,u)(u(x+ε)−u(x−ε)) ≥ 0. As long as u(·) is strictly increasing, we
will get π(x,ε,u) ≥ 0 for all x,ε.

Second, we are going to prove that (iv) implies (ii). Suppose that π(x,ε,u) ≥ 0 for all x,ε.
Given some y, z with y > z, x denotes y+z

2 , their middle point, and ε denotes y−z
2 , half of

their distance. By the assumption, we have

u(
y + z

2
) = 1

2
u(y)+ 1

2
u(z)+π(

y + z

2
,

y − z

2
,u)(u(y)−u(z)) ≥ 1

2
u(y)+ 1

2
u(z)

for any y > z. This statement is called midpoint concavity. To get the concavity of u(·), it
requires u(·) to be continuous.

In conclusion, we have that (i) is equivalent to (ii) because of the Jensen’s inequality. (i)
iff (iii) is shown in P.187 (actually, it requires u(·) to be strictly increasing). Since we have
proven that (i) implies (iv) as well as (iv) implies (ii) (under continuity), then we have proven
that these four statements are equivalent.

EXERCISE 6.C.4.

(a) Given α = (α1, . . . ,αN ) ∈ RN+ and α′ = (α′
1, . . . ,α′

N ) ∈ RN+ with α ≥ α′. Since zi ≥ 0 with
probability one for all i = 1, . . . , N , it implies

∑
αi zi ≥∑

α′
i zi almost surely. Hence, by

the monotonicity of u(·), we can infer that
∫

u(
∑
αi zi )dF (z1, . . . , zN ) ≥ ∫

u(
∑
α′

i zi )dF (z1, . . . , zN ).
That is the monotonicity of U (·).

(b) Given α= (α1, . . . ,αN ) ∈RN+ , α′ = (α′
1, . . . ,α′

N ) ∈RN+ and t ∈ (0,1). Since u(·) is concave,
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we have

U (tα+ (1− t )α′)

=
∫

u(
∑

(tαi + (1− t )α′
i )zi )dF (z1, . . . , zN )

=
∫

u(t
∑

αi zi + (1− t )
∑

α′
i zi )dF (z1, . . . , zN )

≤t
∫

u(
∑

αi zi dF (z1, . . . , zN )+ (1− t )
∫

u(
∑

α′
i zi dF (z1, . . . , zN )

=tU (α)+ (1− t )U (α′).

It is the concavity of U (·).

(c) Let (αm)m∈N be a sequence of vector in RN+ converging to (α) ∈ RN+ . There exists a
positive number B such that αm ≤ (B , . . . ,B) for every m. Since u(·) is increasing and
all zn are nonnegative almost surely,

∫
u(αm

1 z1+·· ·+αm
N zN )dF (z1, . . . , zN ) ≤ ∫

u(B z1+
·· ·+B zN )dF (z1, . . . , zN ) <∞. Thus, u(αm

1 z1+·· ·+αm
N zN ) is dominated by a integrable

function. By Lebesgue’s dominated convergence theorem, we have

lim
m→∞

∫
u(αm

1 z1+·· ·+αm
N zN )dF (z1, . . . , zN ) =

∫
lim

m→∞u(αm
1 z1+·· ·+αm

N zN )dF (z1, . . . , zN )

. Moreover, since u(·) is continuous,
∫

limm→∞ u(αm
1 z1 +·· ·+αm

N zN )dF (z1, . . . , zN ) =∫
u(α1z1 +·· ·+αN zN )dF (z1, . . . , zN ). In short, we have

lim
m→∞

∫
u(αm

1 z1 +·· ·+αm
N zN )dF (z1, . . . , zN ) =

∫
u(α1z1 +·· ·+αN zN )dF (z1, . . . , zN )

, and we prove the continuity of U (·).

In fact, the continuity is simply implied by the concavity.

EXERCISE 6.C.5.

(a) If u(·) is concave, it would satisfy u(λx+(1−λ)y) ≥λu(x)+(1−λ)u(y) for all x, y ∈RL+
and λ ∈ (0,1). It can be interpreted that the decision maker prefers λx + (1−λ)y to
a lottery generating x with probability λ and y with probability 1−λ. It coincide the
definition of risk averse.

(b) Correction: denote the Bernoulli utility function by ũ, another symbol.
Let p ≫ 0 be a fixed price vector and w, w ′ be two different wealth levels and λ ∈ [0,1].
Denote the demand function by x(·). Let x = x(p, w) and x ′ = x(p, w ′). Then we have
p · (λx + (1−λ)x ′) ≤ λw + (1−λ)w ′. Thus u(λx + (1−λ)x ′) ≤ ũ(λw + (1−λ)w ′). By
assumption, u(·) is concave, then we have

u(λx + (1−λ)x ′) ≥λu(x)+ (1−λ)u(x ′) =λũ(w)+ (1−λ)ũ(w ′)

Thus, ũ(λw + (1−λ)w ′) ≥λũ(w)+ (1−λ)ũ(w ′) and it also exhibits risk aversion.

6



To interpret, since the uncertain wealth leads to uncertain commodities. It means
that if the decision maker exhibits risk aversion in the commodities domain, the risk
aversion would also exhibit in the wealth domain.

(c) To provide a counterexample, let L = 2. Define u(x) =p
max{x1, x2} and it is not con-

cave. Consider p = (1,2) so that x(p, w) = (w,0) for all w ≥ 0. Hence, ũ =p
w for all

w ≥ 0. It is concave.

EXERCISE 6.C.6.

(a) Suppose that u2(·) is more concave than u1(·). By Jensen’s inequality, for any F (·), we
have

u2(c(F,u2))

=
∫

u2(x)dF (x)

=
∫

ψ(u1(x))dF (x)

≤ψ(
∫

u1(x)dF (x))

=ψ(u1(c(F,u1)))

=u2(c(F,u1)).

Then c(F,u2) ≤ c(F,u1) holds if u2(x) is strictly increasing.

Conversely, suppose that c(F,u2) ≤ c(F,u1). There always exists ψ(·) mapping the
range of u1(·) to the range of u2(·) with ψ : u1(x) 7→ u2(x). We are going to prove such
ψ(·) is concave. Given a < b and t ∈ (0,1), let F (·) be a distribution with atom at
u1(a),u1(b) and height t ,1− t respectively. Hence, since c(F,u2) ≤ c(F,u1), we have

tψ(u1(a))+ (1− t )ψ(u1(b))

=tu2(a)+ (1− t )u2(b)

=
∫

u2(x)dF (x)

=u2(c(F,u2))

≤u2(c(F,u1))

=ψu1(c(F,u1))

=ψ(
∫

u1(x)dF (x))

=ψ(tu1(a)+ (1− t )u1(b)).

It shows that ψ(·) is concave.

(b) Suppose that c(F,u2) ≤ c(F,u1). For any lottery F (·), if
∫

u2(x)dF (x) ≥ u2(x̄), by def-
inition, it implies u2(c(F,u2)) ≥ u2(x̄). Then c(F,u2) ≥ x̄ is implied whenever u2(·) is
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strictly increasing. Thus, it implies c(F,u1) ≥ c(F,u2) ≥ x̄ and then
∫

u1(x)dF (x) =
u1(c(F,u1)) ≥ u1(x̄). Condition (v) holds.

Conversely, supposed that
∫

u2(x)dF (x) ≥ u2(x̄) implies
∫

u1(x)dF (x) ≥ u1(x̄). By
definition,

∫
u2(x)dF (x) = u2(c(F,u2)). It implies

∫
u1(x)dF (x) ≥ u1(c(F,u2)). Thus,

we have u1(c(F,u1)) = ∫
u1(x)dF (x) ≥ u1(c(F,u2)). Then condition (iii) holds if u1(·) is

strictly increasing.

EXERCISE 6.C.7.

(a) Supposed that c(F,u2) ≤ c(F,u1). Given some x,ε, let F (·) be a lottery winning x + ε

and x−εwith probability 1
2+π(x,ε,u2) and 1

2−π(x,ε,u2) respectively. Thus, u2(c(F,u2)) =∫
u2(x)dF (x) = u2(x), or c(F,u2) = x. By assumption, we have u1(c(F,u1)) ≥ u1(x).

Hence,

u1(c(F,u1))

=
∫

u1(x)dF (x)

=(
1

2
+π(x,ε,u2))u1(x +ε)+ (

1

2
−π(x,ε,u2))u1(x −ε)

and

u1(x)

=(
1

2
+π(x,ε,u1))u1(x +ε)+ (

1

2
−π(x,ε,u1))u1(x −ε).

u1(c(F,u1)) ≥ u1(x) implies (π(x,ε,u2)−π(x,ε,u1))(u1(x +ε)−u1(x −ε)) ≥ 0. Then we
have π(x,ε,u2) ≥π(x,ε,u1) under strictly monotonicity assumption.

(b) Supposed that π(x,ε,u2) ≥ π(x,ε,u1). Assume that π(x, ·,u1) is differentiable for i =
1,2. Since π(x,0,u1) = π(x,0,u1) = 0, condition (iv) implies that ∂π(x,0,u2)

∂ε ≥ ∂π(x,0,u1)
∂ε .

By P.190, r A(x,ui ) = 4∂π(x,0,ui )
∂ε

. Then we can conclude with r A(x,u2) ≥ r A(x,u1).

EXERCISE 6.C.8.

Since u(·) exhibits decreasing absolute risk aversion, we define u1(x) = u(w1+x) and u2(x) =
u(w2 +x), and assume that w1 < w2. Now we know that u1(·) is more risk averse than u2(·).
By Example 6.C.2 continued, we can conclude that α∗

1 < α∗
2 . In other words, the decision

maker puts more amount of wealth in the risky asset when the wealth is more.

EXERCISE 6.C.9.

(a) The saving decision problem without uncertainty requires the first order condition
u′(w−x0) = v ′(x0). Then we define f (x) =−u′(w−x)+E [v ′(x+y)]. Note that f (x∗) = 0
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and f ′(x) ≤ 0 because of the concavity. It implies f (x) ≥ 0 for all x < x∗ and f (x) ≤ 0
for all x > x∗. Thus, since f (x0) =−u′(w−x0)+E [v ′(x0+y)] =−v ′(x0)+E [v ′(x0+y)] >
0, it implies x∗ > x0.

(b) Define gi (x) = −v ′
i (x) for i = 1,2. g ′

i (x) = −v ′′
i (x) > 0 for i = 1,2, so they can be

treated as utility functions. Moreover, the coefficient of absolute prudence of vi is

− v ′′′
i (x)

v ′′
i (x) =− g ′′

i (x)

g ′
i (x) which equals to the absolute risk aversion of gi (x). By assumption, we

have r A(x, g2) ≥ r A(x, g1). By proposition 6.C.2, we have
∫

g2(x)dF (x) ≥ u2(x̄) implies∫
g1(x)dF (x) ≥ u1(x̄) for any F (·) and x̄. Hence, we have E [g1(x0+y)] < g1(x0) implies

E [g2(x0 + y)] < g2(x0). In other words, E [v ′
1(x0 + y)] > v ′

1(x0) implies E [v ′
2(x0 + y)] >

v ′
2(x0).

In words,

(c) As (b), let g (x) =−v ′(x). v ′′′(x) > 0 implies g ′′(x) < 0 and it is strictly risk averse. Thus,
by definition, E [g (x + y)] < g (E [x + y]) = g (x). We have E [v ′(x + y)] > v ′(x) for all x.

(d) The decreasing of the coefficient of absolute risk aversion of v(·) means the negative
of first derivative. That is

d

d x

−v ′′(x)

v ′(x)
= −v ′′′(x)v ′(x)+ (v ′′(x))2

(v ′(x))2
< 0.

Then −v ′′′(x)/v ′′(x) >−v ′′(x)/v ′(x) > 0 for all x, and hence v ′′′(·) > 0.

EXERCISE 6.C.10.

Given an utility function u(·), we assume w1 > w2. By defining u1(x) = u(w1 + x) and
u2(x) = u(w2 + x), we are going to prove that the statements in proposition 6.C.2 and 6.C.3
are parallel.

(i) By definition, r A(x,u2) ≥ r A(x,u2) is equivalent to that u(·) exhibits decreasing abso-
lute risk aversion.

(ii) The statements are trivially equivalent.

(iii) By definition, ui (c(F,ui )) = ∫
u(wi+z)dF (z) = u(cwi ) = ui (cwi −wi ). It implies c(F,ui ) =

cwi −wi . Since w1 > w2, c(F,u2) ≤ c(F,u1) is equivalent to that (cx −x) is increasing in
x, or (x −cx) is decreasing in x.

(iv) By the definition of π(w1,ε,u), we have

u1(x)

=u(x +w1)

=(
1

2
+π(x +w1,ε,u))u(x +w1 +ε)+ (

1

2
−π(x +w1,ε,u))u(x +w1 −ε)

=(
1

2
+π(x +w1,ε,u))u1(ε)+ (

1

2
−π(x +w1,ε,u))u1(−ε).
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Thus, we haveπ(x+w1,ε,u) =π(x,ε,u1). Similarly, we haveπ(x+w2,ε,u) =π(x,ε,u2).
Then we have proven the statements are equivalent.

(v) Note that
∫

u1(x)dF (x) ≥ u1(x̄) if and only if
∫

u(w1 + x)dF (x) ≥ u(w1 + x̄), and like-
wise for u2(·). Hence, they are equivalent.

EXERCISE 6.C.11.

Suppose that w2 > w1 are two different wealth level and let ui (t ) = u(t wi ). Then, given the
wealth level wi , we can rewrite the maximization problem

max
0≤α≤wi

∫
u(wi −α+αz)dF (x) = max

0≤γ≤1

∫
ui (1−γ+γz)dF (x)

where γ represents the proportion of wealth invested in the risky asset. The absolute risk
aversion of ui is

r A(t ,ui ) =−u′′
i (t )

u′
i (t )

=−wi u′′(t wi )

u′(t wi )
= rR (t wi ,u).

Thus, if r R(x,u) s increasing in x, r A(t ,u2) would be no less than r A(t ,u1). In other words,
u2(·) would be more risk averse than u1(·) in the relative sense. In Example 6.C.2, r A(t ,u2) ≥
r A(t ,u1) implies γ∗

2 ≤ γ∗
1 . That is, the proportion of wealth invested in the risky asset is

increasing in the wealth level.

EXERCISE 6.C.12.

Exercise correction: In (c), it should be limρ→1(x1−ρ−1)/(1−ρ).

(a) The if part is trivial. To prove the only if part, note that u′′(·)
u′(·) is the derivative of lnu′(·).

Hence, supposed that the relative risk aversion equal to ρ ̸= 1. Then we have

(lnu′(x))′ =−x−1ρ

⇒ lnu′(x) =−ρ ln x +C1

⇒u′(x) = eC1 x−ρ

⇒u(x) = eC1

1−ρ
x1−ρ+C2.

In other words, we can say that u(x) = βx1−ρ +α. Note that we require u(x) to be
nondecreasing, so we require β> 0.

(b) In (a), if ρ = 1, we have u(x) = eC1 ln x +C2

(c) Since limρ→1 x1−ρ−1 = limρ→1 1−ρ = 0 and limρ→1
−x1−ρ ln x

−1 exists, by L’Hôspital rule,

lim
ρ→1

x1−ρ−1

1−ρ
= lim

ρ→1

−x1−ρ ln x

−1
= ln x.
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EXERCISE 6.C.13.

Let π(·) be the profit function and F (·) be distribution of the random price. By proposition
5.C.1 (ii), π(·) is convex. Then we have E(π(p)) = ∫

π(p)dF (p) ≥ π(
∫

pdF (p))π(E(p)) by
Jensen’s inequality. That is, the firm would prefer the uncertain price.

EXERCISE 6.C.14.

(a) Suppose that u∗(·) is strongly more risk averse than u(·). Then that exist k > 0 and
a nonincreasing, concave function v(·) such that u∗(·) = ku(·)+ v(·). Define ψ(x) =
kx + v(u−1(x)). Since ψ(u(x)) = u∗(x), by proposition 6.C.2, it is sufficient to show
that ψ(x) is concave. In fact, we only have to prove that v(u−1(x)) is concave. Since
u(·) is increasing and concave, u−1 will be convex. Then because v(·) is nonincreasing
and convex, we have

v(u−1(αx + (1−α)y)) ≤ v(αu−1(x)+ (1−α)u−1(y)) ≤αv(u−1(x))+ (1−α)v(u−1(y))

for all x, y and α ∈ (0,1).

(b) Suppose that v(·) is not constant. Since v(·) is decreasing and concave, it means that
v(·) is not bounded below. Thus, since u(·) is increasing and bounded above, the limit
of u(x +1)−u(x) exists and it converges to 0. We can derive the following equation

u∗(x +1)−u∗(x) = k(u(x +1)−u(x))+ (v(x +1)− v(x)).

With the discussion above, we can infer that u∗(x+1)−u∗(x) would be negative when-
ever x is sufficiently large, but it contradicts to the assumption that u∗(·) should be
increasing.

(c) By (a), we know that, given a utility function u(·), the set of functions which is more
strongly risk-aversion is a subset of the set of more Arrow-Pratt risk-aversion.

Moreover, by (b), we give an example to illustrate that there is no more strongly risk-
aversion function other than an affine transformation. Meanwhile, the constant ab-
solute risk averse functions, in the Arrow-Pratt sense, are all bounded, and they are
not affine transformation of each other.

In conclusion, we can infer that given a utility function u(·), the set of functions which
is more strongly risk-aversion is a proper subset of the set of more Arrow-Pratt risk-
aversion.

EXERCISE 6.C.15.

(a) If min{a,b} ≥ 1, the riskless asset would be dominated by the risky asset because risky
asset will generate profit greater than the riskless asset does. Thus, the necessary
condition would be min{a,b} < 1.
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(b) If πa + (1−π)b ≤ 1, the expected profit from the risky asset would be less than from
riskless asset. Besides, the decision maker is a risk averter. The risky asset would be
dominated if the condition above hold. Hence, one of the necessary conditions for
strictly positive demand of risky asset is πa + (1−π)b > 1.

(c) Denote the demand of risky asset by x. The first-order condition would be

π(a −1)u′(1−x +xa)+ (1−π)(b −1)u′(1−x +xb) = 0.

(d) Let f (a, x,π) =π(a −1)u′(1−x +xa)+ (1−π)(b −1)u′(1−x +xb).Then we have

∂ f (a, x,π)

∂a
=π[u′(1−x +xa)+x(a −1)u′′(1−x +xa)] > 0

∂ f (a, x,π)

∂x
=π(a −1)2u′′(1−x +xa)+ (1−π)(b −1)2u′′(1−x +xb) < 0

Thus, by the implicit function theorem, we have

d x1

d a
=−d x

d a
=

∂ f (a,x,π)
∂a

∂ f (a,x,π)
∂x

< 0.

(e) If the probability of winning small prize become larger, the decision maker should
buy more riskless asset. Thus, x1 should increase. In other words, d x1/dπ should be
positive.

(f) Similar to (d), we derive

∂ f (a, x,π)

∂π
= (a −1)u′(1−x +xa)− (b −1)u′(1−x +xb) < 0.

Thus, we have

d x1

dπ
=−d x

dπ
=

∂ f (a,x,π)
∂π

∂ f (a,x,π)
∂x

> 0.

It coincide with the conjecture.

EXERCISE 6.C.16.

(a) It he owns the lottery, then he would be willing to sell it only if the price ps satisfies

u(w +ps) ≥ pu(w +G)+ (1−p)u(w +B).

Thus, the minimum price equals to u−1(pu(w +G)+ (1−p)u(w +B))−w .

(b) If he dose have it, then he would be willing to buy it only if the price pb satisfies

pu(w +G −pb)+ (1−p)u(w +B −pb) ≥ u(w).

12



(c) With the notations in Proposition 6.C.3, we say that cw = w +ps and cw−pb = w . By
(iii) of the Proposition, it says that (x−cx) is decreasing in x if u(·) exhibits decreasing
absolute risk aversion. (x−cx) equals to −ps when x equals to w , and it equals to −pb

when x equals to w −pb . Thus, ps and pb are the same only if u(·) exhibits constant
absolute risk aversion.

(d) First, ps satisfies √
10+ps = p

p
20+ (1−p)

p
15.

Then we have
ps = 5[(7−4

p
3)p2 + (4

p
3−6)p +1].

On the other hand, pb should satisfy

p
√

20−pb + (1−p)
√

15−pb =p
10.

EXERCISE 6.C.17.

If the individual exhibits constant relative risk aversion, his utility must be either βx1−ρ+γ

or β ln x+γ. It depends on that the relative risk aversion level is one or not. Assume it is the
former. The result can be obtained in the similarly way if the utility function is the later. In
period 1, given the initial wealth w1, the decision maker chooses α1 to be the solution to
the maximization problem

max
0≤α1≤1

∫
β(((1−α1)R +α1x2)w1)1−ρ+γdF (x2).

We assume the solution is α∗. In fact, it is identical to the maximization problem

max
0≤α≤1

∫
(((1−α)R +αx))1−ρdF (x). (1)

It means the solution is irrelevant to the initial wealth w1. Hence, in period 0, the decision
maker aims to deal with the maximization problem

max
0≤α0≤1

∫ ∫
β(((1−α∗)R +α∗x2)((1−α0)R +α0x1)w0)1−ρ+γdF (x1)dF (x2)

It is identical to the following maximization problem

max
0≤α0≤1

∫
β(((1−α∗)R +α∗x2))1−ρdF (x2)

∫
(((1−α0)R +α0x1))1−ρdF (x1)

which is identical to (6.1). It means that the optimal solutions of α0 and α1 are both α∗.
To show that the result can not be obtained if the preference is constant absolute risk

aversion, we provide a counterexample to say that. Let u(x) = −e−ax , a utility function
exhibiting constant absolute risk aversion, and R = 1 , the return of riskless asset. In the
following discussion, αt denote the amount, instead of the proportion, of money invested
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in risky asset. Thus, given the initial wealth w1, the maximization problem in period 1 can
we written as

max
0≤α1≤w1

∫
−e−((w1−α1)+α1x2)dF (x2).

Similarly, the problem is identical to

max
0≤α≤w

∫
−eα(1−x)dF (x). (2)

It means the solution is independent with the initial wealth. Hence, we assume the solution
is α∗. Thus, the maximization problem in period 0 would be

max
0≤α0≤w0

∫ ∫
−e−(w0−α0+α0x1−α∗+α∗x2 dF (x2)dF (x1).

which is identical to (6.2). In conclusion, the amount of money invested in the risky as-
set would be the same in each period under this scenario. It means the proportion of the
money invested in risky asset may not be the same. It depends on the initial wealth of each
period.

EXERCISE 6.C.18.

(a)

r A(x) =−u′′(x)

u′(x)
= 1

2
x−1,rR (x) =−xu′′(x)

u′(x)
= 1

2

Thus, r A(5) = 1
10 and rR (5) = 1

2 .

(b) Certainty equivalent
∫

u(x)dF (x) = 1
2

p
16+ 1

2

p
4 = 3. Thus, c(F,u) = 9.

Probability premium u(10) = ( 1
2 +π(10,6,u))(u(16))+ ( 1

2 −π(10,6,u))(u(4)). Thus,

π(10,6,u) =
p

10−3
2 .

(c) Certainty equivalent
∫

u(x)dF (x) = 1
2

p
36+ 1

2

p
16 = 3. Thus, c(F,u) = 25

Probability premium u(26) = ( 1
2+π(20,10,u))(u(36))+( 1

2−π(26,10,u))(u(16)). Thus,

π(26,10,u) =
p

26−5
2 .

EXERCISE 6.C.19.

Given some w , let θ = (θ1, . . . ,θN ), a column vector, with
∑

n θn ≤ w be the portfolio of the
risky asset. Since every risky asset is normal random variable, the total asset can be consid-
ered as a normal random variable with mean θ⊺µ+r (w −∑

n θn) and variance θ⊺V θ, say X .
Then the expected utility would be E [−e−αX ] which is similar to the moment-generating
function of X . Specifically,

E [−e−αX ] =−MX (−α) =−e−α(θ⊺µ+r (w−∑
n θn ))+ 1

2α
2θ⊺V θ.

14



Thus, the expected utility maximizing problem is equivalent to the maximizing problem of

θ⊺µ+ r (w −
∑
n
θn)− 1

2
αθ⊺V θ.

By the first order condition, we require

µ− r 1− 1

2
α(V +V ⊺)θ∗ =µ− r 1−αV θ∗ = 0

where 0 and 1 are RN vectors with all 0 and 1 respectively. The first equality holds because
the variance-covariance is always symmetric. Thus, we have

θ∗ = 1

α
V −1(µ− r 1).

EXERCISE 6.C.20.

By definition, c(Lϵ,u) = u−1( 1
2 u(x +ϵ)+ 1

2 u(x −ϵ)). Thus, we have

∂c(Lϵ,u)

∂ϵ
= u′(x +ϵ)−u′(x −ϵ)

2u′(u−1( 1
2 u(x +ϵ)+ 1

2 u(x −ϵ)))

and

∂2c(Lϵ,u)

∂ϵ2
= [ 1

2 u′′(x +ϵ)+ 1
2 u′′(x −ϵ)][u′(u−1( 1

2 u(x +ϵ)+ 1
2 u(x −ϵ)))]

u′(u−1( 1
2 u(x +ϵ)+ 1

2 u(x −ϵ)))2

−
[ 1

2 u′(x +ϵ)− 1
2 u′(x −ϵ)][

u′′(u−1( 1
2 u(x+ϵ)+ 1

2 u(x−ϵ)))

u′(u−1( 1
2 u(x+ϵ)+ 1

2 u(x−ϵ)))
]

u′(u−1( 1
2 u(x +ϵ)+ 1

2 u(x −ϵ)))2

Then we have limϵ→0
∂2c(Lϵ,u)

∂ϵ2 = u′′(x)
u′(x) =−r A(x).

6.D. COMPARISON OF PAYOFF DISTRIBUTION IN TERMS OF

RETURN AND RISK

EXERCISE 6.D.1.

Suppose that L = {pL
1 , pL

2 , pL
3 }.

(a) Given L, the lotteries we want (p1, p2, p3) should satisfy

p1 ≤ pL
1

p1 +p2 ≤ pL
1 +pL

2

Note that the second condition is equivalent to p3 ≥ pL
3 .

In the simplex diagram, it would look like

15



1 2

3

L

(b) It is as same as above.

EXERCISE 6.D.2.

Since u(x) = x is nondecreasing, by definition,
∫

xdF (x) ≥ ∫
xdG(x). Let F (x) be a lottery

getting 3 dollar for sure, and G(x) be a lottery getting 0 dollar and 4 dollar with equal chance.
Hence, the mean of F (·) is 3 and it is 2 for G(·). However, F (3) = 1 > 0.5 =G(3).

EXERCISE 6.D.3.

An elementary increase in risk from F (·) is also a mean-preserving spread of F (·). In Ex-
ample 6.D.2, it says that any mean-preserving spread of F (·) is second-order dominated by
F (·). Hence, so is any elementary increase in risk from F (·).

EXERCISE 6.D.4.

Let L = (p1, p2, p3) and L′ = (p ′
1, p ′

2, p ′
3).

(a) The mean of L and L′ are 2−p1+p3 and 2−p ′
1+p ′

3 respectively. If they were the same,
then we have p1−p3 = p ′

1−p ′
3. It means the line of L to L′ will be parallel to the height

from $2-vertex. In the simplex digram it would look like

16



1 2

3

L
L′

(b) For any risk averse preference, it would prefer 2 dollars for sure to a lottery getting 1
dollar and 3 dollar with equal chance. Thus, the indifference curve would be steeper
than the height from $2-vertex. The second-order stochastically dominated lotteries
would look like as following

1 2

3

L
L′

(c) If L′ is a mean-preserving spread of L′, it means L′ keeps the mean of L but more risky.
The possible allocation of L′ would be like as following

17



1 2

3

L
L′

(d) Inequality (6.D.2) holds if and only if

p ′
1 ≥ p1

p ′
1 + (p ′

1 +p ′
2) ≥ p1 + (p1 +p2).

Besides, we require they have the same mean, then we also needs p ′
1 −p1 = p ′

3 −p3.
This equation is equivalent to 2∗p ′

1+p ′
2 = 2∗p1+p2, so the second inequality holds.

Hence, we only have to restrict p ′
1 ≥ p1. It means that, on the isomean line, L′ should

be closer to 1$-dollar node than L. The diagram would look like

1 2

3

L
L′

In fact, we have three identical diagram form (a) through (c).

6.E. STATE-DEPENDENT UTILITY
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EXERCISE 6.E.1.

Let x ≿R x ′ denote that x is at least as good as x ′ in the presence of regret and R(x, x ′) denote
the expected regret associated with x relative to x ′. Thus, we have

R(x, x ′) = 1

3

p
0+ 1

3

p
4+ 1

3

p
0 = 1

R(x ′, x) = 1

3

p
0+ 1

3

p
0+ 1

3

p
3 =

p
3

2

R(x, x ′′) = 1

3

p
2+ 1

3

p
0+ 1

3

p
0 =

p
2

2

R(x ′′, x) = 1

3

p
0+ 1

3

p
1+ 1

3

p
2 =

p
2+1

2

R(x ′, x ′′) = 1

3

p
2+ 1

3

p
0+ 1

3

p
1 =

p
2+1

2

R(x ′′, x ′) = 1

3

p
0+ 1

3

p
5+ 1

3

p
0 =

p
5

2
.

We can infer that x ′ ≿R x, x ≿R x ′′, and x ′′ ≿R x ′ and ≿R violates transitivity.

EXERCISE 6.E.2.

(a) Denote the probability of each state by πi . Then the expected utility function from
the contingent commodity (x1, x2) can be written as U (x1, x2) = π1u(x1)+π2u(x2).
Since the decision maker is a risk averter, u(·) would be concave. Moreover, U (·) is
also concave, and hence the preference would be convex.

(b) By Exercise 6.C.5(a), a concave utility function cab be interpreted as the decision
maker exhibiting risk aversion.

(c) Given a sequence (αm)m∈R converging to α ∈ RN+, then there is a B ∈ R such that
αm ≤ (B , . . . ,B) for all m. Since all zn ≥ 0 almost surely and u(·) is increasing, we can
infer that u(

∑
n α

m
n zn) ≤ u(

∑
n B zn) for all m. We define um(z1, . . . , zN ) = u(

∑
n α

m
n zn)

and uB (z1, . . . , zN ) = u(
∑

n B zn). With discussion above, um(·) is dominated by uB (·).
That is, um(z1, . . . , zN ) ≤ uB (z1, . . . , zN ) for all possible zn and all m.

By Lebesgue’s Dominated Convergence Theorem and continuity of u(·), we can ob-
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tain

lim
m→∞U (αm)

= lim
m→∞

∫
um(z1, . . . , zN )dF (z1, . . . , zN )

=
∫

lim
m→∞um(z1, . . . , zN )dF (z1, . . . , zN )

=
∫

lim
m→∞u(

∑
n
αm

n zn)dF (z1, . . . , zN )

=
∫

u(
∑
n
αn zn)dF (z1, . . . , zN )

=U (α)

It proves the continuity of U (·).

EXERCISE 6.E.3.

By definition, G(·) and G∗(·) share the same mean. For any concave u(·), we have
∑

s πsu(g (s)) ≤
u(1) because E(g ) = 1. Moreover, we can derive∑

s
πsu(αg (s)+ (1−α))

≥α
∑

s
πsu(g (s))+ (1−α)u(1)

≥∑
s
πsu(g (s)).

Then we have G∗(·) second-order stochastically dominates G(·).
The interpretation is that G∗(·) pulls all the possible outcome of G(·) closer to the mean,

so it is intuitively preferred by risk averters.

6.F. SUBJECTIVE PROBABILITY THEORY

EXERCISE 6.F.1.

First, we are going to prove that the utility function is unique up to positive affine trans-
formation. Suppose an preference ≿ can be represented by u(·) and û(·). In each sate, by
proposition 6.B.2, we have that πsu(·)+βs and π̂sû(·)+β̂s are the same up to positive affine
transformation. So are u(·) and û(·).

Second, we are going to show that the Subjective probabilities are uniquely determined.
Suppose that (π1, . . . ,πs) ̸= (π′

1, . . . ,π′
s). Since their sum are both 1, then there are at least

2 states have different probability. Without loss of generality, we assume that π1 ̸= π′
1 and

π2 ̸= π′
2. We normalize u(0) = 0. Thus, we can find suitable (x1, x2) such that π1u(x1)+

π2u(x2) > 0 and π′
1u(x1)+π′

2u(x2) > 0. Thus, we have (x1, x2, . . . ,0) is preferred with first
kind of Subjective probabilities but (0, . . . ,0) is preferred with second kind, a contradiction.
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EXERCISE 6.F.2.

(a) Suppose that P = {p}. Then we have

UW (R) >UW (H)

⇔0.49 > p

⇔0.51 < 1−p

⇔UB (R) <UB (H)

(b) If P = {0,1}, then we have UW (R) = 0.49 > 0 =UW (H) and UB (R) = 0.51 > 0 =UB (H).
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