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2.D. COMPETITIVE BUDGETS

EXERCISE 2.D.1.

{x ∈R2+ : p1x1 +p2x2 ≤ w} where pi is the price of that consumption good in period i .

EXERCISE 2.D.2.

{(x,h) ∈R2+ : h ≤ 24, px +h ≤ 24}.

EXERCISE 2.D.3.

(a) No.

(b) Suppose that X is convex. For any x, y ∈ Bp,w , αx + (1−α)y ∈ X because X is convex.
Moreover, p · (αx + (1−α)y) =αpẋ + (1−α)p · y ≤ w . Hence αx + (1−α)y ∈ Bp,w .

EXERCISE 2.D.4.

There are two kinks in the graph. The coordinates of the right one is (16,8s) and the coor-
dinates of the left one is ( 16s′+8s−M

s′ , M). Consider the segment between ( 16s′+8s−M
s′ , M) and
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(24,0) and a point on this segment, 8s′
M+8s′−8s ( 16s′+8s−M

s′ , M)+ 8s′
M+8s′−8s (24,0) = (16, 8M s′

M+8s′−8s ).

Since s′ > s and M > 8s, M−8s
s′ < M−8s

s . Hence,

8M s′

M +8s′−8s
= 8M

8+ M−8s
s′

> 8M

8+ M−8s
s

= 8s.

It means that the budget is not convex.

2.E. DEMAND FUNCTIONS AND COMPARATIVE STATICS

EXERCISE 2.E.1.

Since

x1(αp,αw) = αp2

αp1 +αp2 +αp3

αw

αp1
= p2

p1 +p2 +p3

w

p1
= x1(p, w)

x2(αp,αw) = αp3

αp1 +αp2 +αp3

αw

αp2
= p3

p1 +p2 +p3

w

p2
= x2(p, w)

x3(αp,αw) = αβp1

αp1 +αp2 +αp3

αw

αp3
= βp1

p1 +p2 +p3

w

p3
=βx3(p, w),

it satisfies homogeneous of degree zero if and only if β = 1. On the other hand, p · x =
βp1+p2+p3
p1+p2+p3

w . It satisfies Walra’s law also if and only if β= 1.

EXERCISE 2.E.2.

By equation (2.E.4), we have

L∑
l=1

pl
∂xl (p, w)

∂pk

pk

w
+xk (p, w)

pk

w
= 0

or
L∑

l=1

pl xl (p, w)

w

∂xl (p, w)

∂pk

pk

xl (p, w)
+ pk xk (p, w)

w
= 0.

By replacing them with the notations, we can derive

L∑
l=1

bl (p, w)εlk (p, w)+bk (p, w) = 0.

EXERCISE 2.E.3.

By proposition 2.E.1, we have

Dp x(p, w)p +Dw x(p, w)w = 0,
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and
p ·Dp x(p, w)p +p ·Dw x(p, w)w = 0.

Besides, by proposition 2.E.3, we have p ·Dw x(p, w) = 1, so we can infer that

p ·Dp x(p, w)p =−w.

An interpretation is that, when the increment of price is the current price, in other words,
the price is doubled, the increment of total expense would be the current wealth.

EXERCISE 2.E.4.

By differentiating both sides of x(p,αw)−αx(p, w) = 0 at α= 1 , we can derive

∂x(p, w)

∂w
w −x(p, w) = 0.

In terms of elasticities, we have

εℓw (p, w) = ∂xℓ(p, w)

∂w

w

xℓ(p, w)
= 1.

An interpretation is that, since the increment of consumption bundle proportionally equals
the increment of the wealth. By the definition of the elasticities, it should be one.

Since the ℓth entry in Dw x(p, w) is ∂xℓ(p,w)
∂w = xℓ(p,w)

w = xℓ(p,1), Dw x(p, w) only depends
on p. The last equity holds because of the homogeneous assumption. Moreover, the Engel
curve is a straight line going through x(p,1).

EXERCISE 2.E.5.

Since x(p, w) is homogeneous of degree one with respect to w . We have x(p,w)
w = x(p,1).

Moreover, for k ̸= ℓ, ∂xℓ(p,1)
∂k = 1

w
∂xℓ(p,w)

∂pk
= 0. Hence, we can infer that xℓ(p,w)

w = fℓ(pℓ) is a
function of pℓ. By the homogeneity of degree zero (xℓ(p, w)),

fℓ(αpℓ) = xℓ(αp, w)

w
= xℓ(p, 1

αw)

w
= 1

α

xℓ(p, w)

w
= 1

α
fℓ(pℓ).

Furthermore, when α = 1
pℓ

, fℓ(1) = fℓ( 1
pℓ

pℓ) = pℓ fℓ(pℓ). Hence, fℓ(pℓ) = αℓ

pℓ
, or so-called

homogeneous of degree −1. Therefore, xℓ(p, w) = w fℓ(pℓ) = αℓw
pℓ

. By Walras’ law, we have

w = p ·x =∑
pℓ

αℓw
pℓ

= w
∑
αℓ, and we can know that

∑
αℓ = 1.
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EXERCISE 2.E.6.

We first verify proposition 2.E.1. By differentiating directly, we have

∂x1(p, w)

∂p1
p1 =− (2p1 +p2 +p3)

p2

(p1 +p2 +p3)2

w

p1

∂x1(p, w)

∂p2
p2 = (p1 +p3)p2

(p1 +p2 +p3)2

w

p1

∂x1(p, w)

∂p3
p3 = −p2p3

(p1 +p2 +p3)2

w

p1

∂x1(p, w)

∂w
w = p2

p1 +p2 +p3

w

p1
.

Hence, we have
3∑

k=1

∂x1(p, w)

∂pk
pk +

∂x1(p, w)

∂w
w = 0.

By the same logic, verifying the statement still hold for x2(p, w) and x3(p, w) would be easy.
To verify proposition 2.E.3, we derive

∂x1(p, w)

∂w
= p2

p1 +p2 +p3

1

p1
,

∂x2(p, w)

∂w
= p3

p1 +p2 +p3

1

p2
,

∂x3(p, w)

∂w
= p1

p1 +p2 +p3

1

p3
.

Hence, we can infer that
3∑

ℓ=1
pℓ

∂xℓ(p, w)

∂w
= 1.

EXERCISE 2.E.7.

By Walras’ law, we have p1x1(p, w)+p2x2(p, w) = w . Imposing the function form of good ,
we can infer that x2(p, w) = (1−α)w

p2
. It is homogeneous of degree zero.

EXERCISE 2.E.8.

We first rewrite xℓ(p, w) into xℓ(e ln p1 , . . . ,e ln pL ,e ln w ). Then we can derive

d ln(xℓ(p, w))

d ln(pk )

= 1

xℓ(p, w)

∂xℓ(p, w)

∂pk
e ln pk

=∂xℓ(p, w)

∂pk

pk

xℓ(p, w)

=εℓk (p, w).
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By the same logic, we can derive

d ln(xℓ(p, w))

d ln(w)

= 1

xℓ(p, w)

∂xℓ(p, w)

∂w
e ln w

=∂xℓ(p, w)

∂w

w

xℓ(p, w)

=εℓw (p, w).

In the estimation, since d ln(xℓ(p,w))
d ln(p1) = α1, d ln(xℓ(p,w))

d ln(p2) = α2, d ln(xℓ(p,w))
d ln(w) = γ, it provides us an

estimation of each elasticity.

2.F. THE WEAK AXIOM OF REVEALED PREFERENCE AND THE

LAW OF DEMAND

EXERCISE 2.F.1.

We first assume that p ·x(p ′, w ′) ≤ w and p ′ ·x(p, w) ≤ w ′. In the term of chapter 1, B = {x ∈
RL+ : p · x ≤ w} and B ′ = {x ∈ RL+ : p ′ · x ≤ w ′}. By definition 1.C.1, since x(p, w), x(p ′, w ′) ∈ B
, x(p, w), x(p ′, w ′) ∈ B ′, and the single-value assumption, we require x(p, w) = x(p ′, w ′).
Thus, if we assume p ·x(p ′, w ′) ≤ w and x(p, w) ̸= x(p ′, w ′), p ′ ·x(p, w) ≤ w ′ would not hold.
We can therefore infer that p ′ ·x(p, w) > w ′.

EXERCISE 2.F.2.

To prove that x3 is revealed preferred to x2, it is sufficient to show that x2 is feasible under
price p3. Since p3 · x2 = 8, it is feasible. Similarly, x1 · p2 = 8 implies that x1 is feasible
under p2. It implies that x2 is revealed preferred to x1. p1 ·x3 = 8 implies that x1 is revealed
preferred to x3.

EXERCISE 2.F.3.

Denote the quantity of good 2 in year 2 by x.

(a) If the consumption bundle of year 1 is feasible in year 2 and the consumption bundle
of year 2 us feasible in year 1, then the behavior is inconsistent because two bundles
are different. Hence, it is inconsistent when the following equations both hold:

12000+100x ≤ 20000

18000 ≤ 12000+80x.

Both equations hold when x ∈ [75,80].
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(b) The bundle in year 1 is revealed preferred if the bundle in year 1 is infeasible in year
2 and the bundle in year 2 is feasible in year 1. That is,

12000+100x ≤ 20000

18000 > 12000+80x.

Both equations hold when x < 75.

(c) Similarly, the bundle in year 2 is revealed preferred if the bundle in year 1 is feasible
in year 2 and the bundle in year 2 is infeasible in year 1. That is,

12000+100x > 20000

18000 ≤ 12000+80x.

Both equations hold when x > 80.

(d) Since the three intervals form a partition of real number, a situation with any quantity
of good 2 in year 2 can be justify.

(e) Since the quantity of good 1 is more in year 2, it is sufficient t prove that the wealth is
less in year 2. It means that the consumption bundle in year 1 is more expensive than
the bundle in year 2 under two prices. Thus,

20000 > 12000+100x

18000 > 12000+80x.

We an conclude that good 1 is an inferior good when x < 75.

(f) There are two possible cases to conclude that good 2 is inferior. First, if x > 100, we
have to prove that the wealth in year 2 is less. However, by (e), the wealth in year 2 is
less when x < 75. It never holds when x > 100.

Second, if x < 100, we are going to prove that the wealth in year 2 in more. Similarly,
it means that the consumption bundle is more expensive in year 2 under two prices.
Thus,

20000 < 12000+100x

18000 < 12000+80x.

We an conclude that good 2 is an inferior good when x ∈ (80,100).

EXERCISE 2.F.4.

(a) If LQ < 1, then p0 ·x1 < p0 ·x0. It means x1 is feasible under price p0, and the optimal
consumption bundle under p0 is x0. Hence, x0 is revealed preferred to x1.

(b) PQ > 1 implies p1 ·x0 < p1 ·x1. Similarly, It means that x1 is revealed preferred to x0.

(c) Since EQ = w 1/w0, the relationship between EQ and 1 only reflects the change of the
wealth. It would not revealed any information of preference.
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EXERCISE 2.F.5.

Denote the compensated wealth p ′ · x(p, w) by w ′. We should prove (p ′− p) · [x(p ′, w)−
x(p, w)] ≤ 0. The prove goes as follows:

(p ′−p) · [x(p ′, w)−x(p, w)]

=(p ′−p) · [
w

w ′ (x(p ′, w ′)−x(p, w))+ w

w ′ x(p, w)−x(p, w)]

= w

w ′ (p ′−p) · [x(p ′, w ′)−x(p, w)]+ (
w

w ′ −1)(p ′−p) ·x(p, w)

≤(
w

w ′ −1)(w ′−w)

=− 1

w ′ (w ′−w)2

≤ 0

The first inequality holds by the original law of demand.
The proof of the infinitesimal version goes as follows. S(p, w) defined as Dp x(p, w)+

Dw x(p, w)x(p, w)T has been proved to be negative semidefinite. In exercise 2.E.4, we have
argued that Dw x(p, w) = x(p,1) when x(p, w) is homogeneous of degree one with respect
to w . Hence, Dw x(p, w)x(p, w)T = 1

w x(p, w)x(p, w)T is positive semidefinite. As a result,
Dp x(p, w) has to be negative semidefinite.

EXERCISE 2.F.6.

First, the necessity is trivial. The statement should hold under the same wealth. Then,
since x(p, w) is homogeneous of degree zero, x(p ′, w ′) = x( w

w ′ p ′, w) for any w ′. Suppose the
statement in the exercise holds. Give (p, w) and (p ′, w ′), the two statements are equivalent
if we replace x(p ′, w ′) with x( w

w ′ p ′, w). Then the original statement would hold.

EXERCISE 2.F.7.

In matrix notation,

p ·S(p, w)

=p ·Dp x(p, w)+p ·Dw x(p, w)x(p, w)T

=p ·Dp x(p, w)+x(p, w)T

=0T .

The second and the third equality hold because of proposition 2.E.3 and 2.E.2 respectively.
On the other hand,

S(p, w)p

=Dp x(p, w)p +p ·Dw x(p, w)x(p, w)T p

=Dp x(p, w)p +p ·Dw x(p, w)w

=0
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The second and the third equality hold because of the Walras’ law and proposition 2.E.1
respectively.

EXERCISE 2.F.8.

By definition,

ŝℓk (p, w)

= pk

xℓ(p, w)

∂xℓ(p, w)

∂pk
+ pk

xℓ(p, w)

∂xℓ(p, w)

∂w
xk (p, w)

=∂xℓ(p, w)

∂pk

pk

xℓ(p, w)
+ ∂xℓ(p, w)

∂w

w

xℓ(p, w)

pk xk (p, w)

w

=εℓk (p, w)+εℓw (p, w)bk (p, w)

EXERCISE 2.F.9.

(a) Since xT AT x = (xT AT x)T = xT Ax, then xT (A + AT )x = xT Ax + xT AT x = xT 2Ax.
Therefore, A is negative (semi)definite if and only if A+AT is negative (semi)definite.

If A = [−1 2
0 −1

]
, (−1)A11 =−1 and (−1)2 A22 =−1. The determinant holds. However,[

1
1

]T [
1 3
1 3

][
1
1

]
= 0

It means that A is not negative semidefinite.

(b) By proposition 2.F.3, p·S(p, w) = 0 means p1s11(p, w)+p2s21(p, w) = 0 and p1s21(p, w)+
p2s22(p, w) = 0. S(p, w)p = 0 means p1s11(p, w)+ p2s12(p, w) = 0 and p1s21(p, w)+
p2s22(p, w) = 0. Hence, we have

s12(p, w) = s21(p, w) =−p1

p2
s11(p, w)

s22(p, w) = (
p1

p2
)2s11(p, w)

Then for any vector x = [x1x2]T ,

xT S(p, w)x = x2
1 s11(p, w)+x1x2[s21(p, w)+ s12(p, w)]+x2

2 s22(p, w)

= s11(p, w)[x2
1 −2

p1

p2
x1x2 + (

p1

p2
)2x2

2]

= s11(p, w)(x1 − p1

p2
x2)2

= s22(p, w)(x2 − p2

p1
x1)2

Therefore, since S(p, w) is of rank 1, any vector is not parallel with the price vec-
tor should belong its null space. Hence, both s11(p, w) and s22(p, w) cannot be zero.
Moreover, to satisfy negative semidefinite, both s11(p, w) and s22(p, w) should be neg-
ative.
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EXERCISE 2.F.10.

(a) With plugging the numbers directly, we can derive

S(p, w) =
−1 1 0

0 −1 1
1 0 −1


. For any vector x = [

a b c
]T

, we have

a
b
c

T −1 1 0
0 −1 1
1 0 −1

a
b
c


=−a2 −b2 −c2 +ab +ac +bc

=− 1

2
[(a −b)2 + (b − c)2 + (c −a)2]

≤0,

and it is negative semidefinite.

(b) Let p = (1,1,ε) and w = 1. To simplify the calculation, let Ŝ(p, w) be the 2×2 submatrix
of S(p, w) obtained by deleting the last row and column. With plugging the numbers
directly, we have

Ŝ(p, w) = 1

(2+ε)2

[−2−ε 1+2ε
0 −3ε.

]
Hence, 1

4
0

T

S(p, w)

1
4
0

=
[

1
4

]T

Ŝ(p, w)

[
1
4

]
= 2−41ε

(2+ε)2
.

It might be positive if ε is small enough. Thus, S(p, w) is not negative semidefinite. In Exer-
cise 2.E.1, we have argued that this demand function satisfy homogeneous of degree zero
and Walras’ law when β = 1. However, the demand function does not satisfy proposition
2.F.2. Hence, it dose not satisfy the weak axiom.

EXERCISE 2.F.11.

Let p = (p1, p2). By proposition 2.F.3, we have p · S(p, w) = S(p, w)p = 0. When L = 2, p ·
S(p, w) = 0 implies p1s11(p, w)+p2s21(p, w) = 0; meanwhile, S(p, w)p = 0 implies p1s11(p, w)+
p2s12(p, w) = 0. Thus, s12(p, w) = s21(p, w) =−p1

p2
s11(p, w). It means that S(p, w) is symmet-

ric when L = 2.
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EXERCISE 2.F.12.

A demand function is single-value. Therefore, we can assume that, in each Bp,w , there
exists a consumption bundle is strictly preferred to others. Thus, if x(p, w) is generated by
a rational preference ≻, x ≻ y and y ≻ x cannot hold in the same time. p · x(p ′, w ′) ≤ w
implies x(p, w) ≻ x(p ′, w ′). Since the preference is rational, x(p, w) must be infeasible in
Bp,w .

EXERCISE 2.F.13.

Exercise correction:

• In (b), equation (∗), p ·x > w should be p ′ ·x > w ′

• In the last part of (c), x ′ ∈ x(p, w) should be x ′ ̸∈ x(p, w)

(a) We rewrite the definition of the weak axiom based on Definition 1.C.1:

If for some (p, w) with x, y ∈ Bp,w we have x ∈ x(p, w), then for any (p ′, w ′) with x, y ∈
Bp ′,w ′ and y ∈ x(p ′, w ′), we must also have x ∈ x(p ′, w ′).

(b) Since the demand function satisfies Walras’ law, p · x ′ < w implies x ′ ∈ Bp,w but x ′ ̸∈
x(p, w). Hence, we have x, x ′ ∈ Bp,w , x ′ ∈ Bp ′,w ′ , and x ′ ∈ x(p ′, w ′). Suppose that
x ∈ Bp ′,w ′ , by the definition above, we can infer that x ′ ∈ x(p, w), a contradiction.
Hence, we can conclude that x ̸∈ Bp ′,w ′ . That is, p ′ ·x > w .

(c) By definition,

(p ′−p) · (x ′−x)

=p ′ ·x ′+p · x −p · x ′−p ′ ·x

=w ′+w −p ·x −w ′

=w −p ·x ′.

If x ′ ∈ x(p, w), Walras’ law implies p ·x ′ = w and therefore (p ′−p) · (x ′−x) = 0. Other-
wise, if x ′ ̸∈ x(p, w), weak axiom implies x ′ ̸∈ Bp,w . It means that p ·x ′ > w , and hence
(p ′−p) · (x ′−x) < 0.

(d) In the proposition 2.F.1, it is shown that the violation of the weak axiom must lead to a
violation under compensated price change.Therefore, in order to verify the assertion
, it is sufficient to show that the generalized weak axiom holds for all compensated
price change.

Given (p, w), p ′, and x ∈ x(p, w), let w ′ = p ′ · x. For any x ′ ∈ x(p ′, w ′), suppose that
x ′ ∈ Bp,w . It means that p · x ′ ≤ w . As a result, (p ′−p) · (x ′− x) = w −p · x ′ ≤ 0. If the
inequality in (c) holds, we require (p ′−p) ·(x ′−x) = 0. Moreover, the equality implies
x ′ ∈ x(p, w), and the weak axiom holds.
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EXERCISE 2.F.14.

For α > 0, let p ′ = αp and w ′ = αw . Since p ′ · x(p ′, w ′) ≤ w ′, it implies p · x(αp,αw) ≤
w . If x(αp,αw) ̸= x(p, w), by weak axiom, it implies p ′ · x(p, w) > w ′. It is equivalent to
p ·x(p, w) > w , a contradiction. Hence, we can infer that x(αp,αw) = x(p, w).

EXERCISE 2.F.15.

By Walras’ law, x3(p, w) = w+p2
1+p2

2−p1p2

p3
. Following Theorem M.D.4 (iii), let Ŝ(p, w) be the

submatrix with deleting the last row and column. With plugging the numbers directly, we
have

Ŝ(p, w) =
[−1 1

0 −1

]
.

For any nonzero vector x = (a,b),

xT Ŝ(p, w)x

=−a2 +ab −b2

=− (a − 1

2
b)2 − 3

4
b2

≤− 3

4
b2

<0

By the theorem, negative definite Ŝ(p, w) implies that S(p, w) is negative definite for any
vector not proposition to p. Moreover, S(p, w) is not symmetric since Ŝ(p, w) is not.

EXERCISE 2.F.16.

(a) The demand function is homogeneous of degree zero because for all α> 0

x1(αp,αw) = αp2

αp3
= p2

p3
= x1(p, w),

x2(αp,αw) =−αp1

αp3
=−p1

p3
= x2(p, w),

x3(αp,αw) = αw

αp3
= w

p3
= x3(p, w).

Besides, since p ·x = p1
p2
p3

−p2
p1
p3

+p3
w
p3

= w , it satisfies Walras’ law.

(b) Let p = (1,2,1), w = 1 and p ′ = (1,1,1), w ′ = 2. Then x(p, w) = (2,−1,1) and x(p ′, w ′) =
(1,−1,2). However, p ·x(p ′, w ′) = 1 ≤ w and p ′ ·x(p, w) = 2 ≤ w ′, a contradiction.

(c) With plugging the numbers directly, we have

S(p, w) = 1

p2
3

 0 p3 −p2

−p3 0 p1

p2 −p1 0

 .
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Since S(p, w) is an antisymmetric matrix, for all x, xT S(p, w)x = 1
2 xT (S(p, w)+S(p, w)T )x =

0.

Remark: In this case, the demand function violate the weak axiom, but its substitution
matrix is still negative semidefinite.

EXERCISE 2.F.17.

(a) For k = 1, . . . ,L and α> 0,

xk (αp,αw) = αw∑L
ℓ=1αpℓ

= αw

α
∑L

ℓ=1 pℓ

= w∑L
ℓ=1 pℓ

xk (p, w).

It means that the demand function is homogeneous of degree of zero.

(b)

p ·x =
L∑

k=1
pk xk

=
L∑

k=1
pk

w∑L
ℓ=1 pℓ

= w

∑L
k=1 pk∑L
ℓ=1 pℓ

= w

It means that the demand function satisfies Walras’ law.

(c) If p · x(p ′, w ′) ≤ w ,
w ′∑L

ℓ=1 pℓ∑L
ℓ=1 p ′

ℓ

≤ w . Moreover, suppose that x(p ′, w ′) ̸= x(p, w) which

means w ′∑L
ℓ=1 p ′

ℓ

̸= w∑L
ℓ=1 pℓ

. We can infer that
w ′∑L

ℓ=1 pℓ∑L
ℓ=1 p ′

ℓ

< w , and therefore
∑L

ℓ=1 p ′
ℓ

w∑L
ℓ=1 pℓ

>
w ′. Hence, p ′ ·x(p, w) > w ′, and the weak axiom holds.

(d) For allℓ,k, ∂xℓ(p,w)
∂pk

=− w
(
∑L

ℓ=1 pℓ)2 and ∂xℓ(p,w)
∂w = 1∑L

ℓ=1 pℓ
. Therefore, for allℓ,k, sℓk (p, w) =

0, and S(p, w) is a zero matrix. Moreover, it is negative semidefinite, symmetric, but
it is not negative definite.
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